lunes, 10 de octubre de 2011

La sucesión de Fibonacci

Consideremos la siguiente sucesión de números:
1, 1, 2, 3, 5, 8, 13, 21, 34...
 Cada número a partir del tercero, se obtiene sumando los dos que le preceden. Por ejemplo, 21 = 13 + 8; el siguiente a 34 será 34 + 21 = 55.
 Esta sucesión es la llamada "sucesión de Fibonacci"*.
*Es el sobrenombre con el que se conoció al rico comerciante Leonardo de Pisa (1170-1240). Viajó por el Norte de África y Asia y trajo a Europa algunos de los conocimientos de la cultura árabe e hindú, entre otros la ventaja del sistema de numeración arábigo (el que usamos) frente al romano. 
La sucesión de Fibonacci presenta diversas regularidades numéricas. Para que resulte más sencillo las hemos enunciado en casos particulares (aunque se cumplen en general) y hemos calculado los primeros catorce términos de esta sucesión:
 
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14
1 1 2 3 5 8 13 21 34 55 89 144 233 377
  • Si sumas los cuatro primeros términos y añades 1, te sale el sexto (1+1+2+3   + 1 = 8). Si sumas los cinco primeros términos y añades 1, te sale el séptimo (1+1+2+3+5     +  1 = 13).
  • Si sumas los tres primeros términos que ocupan posición impar (t1,t3,t5) sale el sexto término (t6), (1+2+5 = 8). Si sumas los cuatro primeros términos que ocupan posición impar (t1,t3,t5,t7) sale el octavo término (t8), (1+2+5+13 = 21).
  • Si sumas los tres primeros términos que ocupan posición par (t2,t4,t6) y añades 1, sale el séptimo término (t7), (1+3+8   + 1 =13). Si sumas los cuatro primeros términos que ocupan posición par (t2,t4,t6,t8) y añades 1, sale el noveno término (t9), (1+3+8+21  +  1 =34).
¡Aún las hay más difíciles de imaginar! 
  • Tomemos dos términos consecutivos, por ejemplo: t4=3 y t5=5; elevando al cuadrado y sumando: 32+52=9+25=34 que es el noveno (4+5) término de la sucesión. Tomando t6=8 y t7=13; elevando al cuadrado y sumando: 82+132=64+169=233 que es el (6+7) decimotercer término de la sucesión.
  • Pero si elevamos al cuadrado los cinco primeros términos y los sumamos, sale el producto del quinto y el sexto término: 12+12+22+32+52=40=5*8. Si hacemos lo mismo para los seis primeros términos, sale el producto del  sexto y el séptimo término:12+12+22+32+52+82=104=8*13.
  • Y quizás la más sorprendente sea la siguiente propiedad. Dividamos dos términos consecutivos de la sucesión, siempre el mayor entre el menor y veamos lo que obtenemos:
1  : 1   =  1   
   2  : 1   =  2
   3  : 2   =  1´5
   5  : 3   =  1´66666666
   8  : 5   =  1´6
  13 : 8   =  1´625
  21 :13  =  1´6153846....
  34 :21  =  1´6190476....
  55 :34  =  1´6176471....
  89 :55  =  1´6181818....
 Al tomar más términos de la sucesión y hacer su cociente nos acercamos al número de oro. Cuanto mayores son los términos, los cocientes se acercan más a =1,61803.... En lenguaje matemático,
Efectivamente,
                     

Curiosidades áureas

Potencias. Los números guardan unas curiosas relaciones entre si. Efectivamente, podemos deducirlas a partir de la ecuación que tiene como solución el número de oro:
Potencias 2. Consideremos la sucesión de término general: . Si calculamos los primeros términos, podemos observar una curiosa relación entre ellos. Calculando primero algunas potencias
podemos concluir que la sucesión dada se convierte en
Evidentemente, cada término a partir del tercero se puede obtener sumando los dos anteriores. Lo curioso es que esta relación es la misma que se verifica en la sucesión de Fibonacci.
Limites. Comprobemos que los siguientes límites dan como resultado el número de oro:
                                     1                               2
                   
1. Llamemos "L" al valor del límite. Fácilmente se comprueba que se verifica la ecuación . Elevando al cuadrado los dos miembros y pasando todos los términos a la izquierda se obtiene la ecuación final . Una de las soluciones de esta ecuación es nuestro número de oro .
2. Sea "M" el valor del límite. Se comprueba la relación . Quitando denominadores y pasando todos los términos a la izquierda se obtiene la ecuación cuya solución positiva es el número de oro.

El número de oro en el arte, el diseño y la naturaleza

El número áureo aparece, en las proporciones que guardan edificios, esculturas, objetos, partes de nuestro cuerpo, ...
Un ejemplo de rectángulo áureo en el arte es el alzado del Partenón griego.
 En la figura se puede comprobar que AB/CD=. Hay más cocientes entre sus medidas que dan el número áureo, por ejemplo: AC/AD= y CD/CA=.
Hay un precedente a la cultura griega donde también apareció el número de oro. En La Gran Pirámide de Keops, el cociente entre la altura de uno de los tres triángulos que forman la pirámide y el lado es 2.

Ya vimos que el cociente entre la diagonal de un pentágono regular y el lado de dicho pentágono es el número áureo. En un pentágono regular está basada la construcción de la Tumba Rupestre de Mira en Asia Menor.

Ejemplos de rectángulos áureos los podemos encontrar en las tarjetas de crédito, en nuestro carnet de identidad y también en las cajetillas de tabaco.

Unas proporciones armoniosas para el cuerpo, que estudiaron antes los griegos y romanos, las plasmó en este dibujo Leonardo da Vinci. Sirvió para ilustrar el libro La Divina Proporción  de Luca Pacioli editado en 1509.
En dicho libro se describen cuales han de ser las proporciones de las construcciones artísticas. En particular, Pacioli propone un hombre perfecto en el que las relaciones entre las distintas partes de su cuerpo sean proporciones áureas. Estirando manos y pies y haciendo centro en el ombligo se dibuja la circunferencia. El cuadrado tiene por lado la altura del cuerpo que coincide, en un cuerpo armonioso, con la longitud entre los extremos de los dedos de ambas manos cuando los brazos están extendidos y formando un ángulo de 90º con el tronco. Resulta que el cociente entre la altura del hombre (lado del cuadrado) y la distancia del ombligo a la punta de la mano (radio de la circunferencia) es el número áureo.
El cuadro de Dalí Leda atómica, pintado en 1949, sintetiza siglos de tradición matemática y simbólica, especialmente pitagórica. Se trata de una filigrana basada en la proporción áurea, pero elaborada de tal forma que no es evidente para el espectador. En el boceto de 1947 se advierte la meticulosidad del análisis geométrico realizado por Dalí basado en el pentagrama místico pitagórico.


En la naturaleza, aparece la proporción áurea también en el crecimiento de las plantas, las piñas, la distribución de las hojas en un tallo, dimensiones de insectos y pájaros y la formación de caracolas.
 
La espiral logarítmica
Si tomamos un rectángulo áureo ABCD y le sustraemos el cuadrado AEFD cuyo lado es el lado menor AD del rectángulo, resulta que el rectángulo EBCF es áureo. Si después a éste le quitamos el cuadrado EBGH, el rectángulo resultante HGCF también es áureo. Este proceso se puede reproducir indefinidamente, obteniéndose una sucesión de rectángulos áureos encajados que convergen hacia el vértice O de una espiral logarítmica.
Esta curva ha cautivado, por su belleza y propiedades, la atención de matemáticos, artistas y naturalistas. Se le llama también espiral equiangular (el ángulo de corte del radio vector con la curva es constante) o espiral geométrica (el radio vector crece en progresión geométrica mientras el ángulo polar decrece en progresión aritmética). J. Bernoulli, fascinado por sus encantos, la llamó spira mirabilis, rogando que fuera grabada en su tumba.
La espiral logarítmica vinculada a los rectángulos áureos gobierna el crecimiento armónico de muchas formas vegetales (flores y frutos) y animales (conchas de moluscos), aquellas en las que la forma se mantiene invariante. El ejemplo más visualmente representativo es la concha del nautilus.

El rectángulo áureo

Dibujamos un cuadrado y marcamos el punto medio de uno de sus lados. Lo unimos con uno de los vértices del lado opuesto y llevamos esa distancia sobre el lado inicial, de esta manera obtenemos el lado mayor del rectángulo.
Si el lado del cuadrado vale 2 unidades, es claro que el lado mayor del rectángulo vale por lo que la proporción entre los dos lados es (nuestro número de oro).
Obtenemos así un rectángulo cuyos lados están en proporción áurea. A partir de este rectángulo podemos construir otros semejantes que, como veremos mas adelante, se han utilizando en arquitectura (Partenón, pirámides egipcias) y diseño (tarjetas de crédito, carnets, cajetillas de tabaco,  etc...).
Una propiedad importante de los triángulos áureos es que cuando se colocan dos iguales como indica la figura, la diagonal AB pasa por el vértice C.
En efecto, situemos los rectángulos en unos ejes de coordenadas con origen en el punto A. Las coordenadas de los tres puntos serán entonces:
Vamos a demostrar que los vectores y son proporcionales:



Por lo tanto, los tres puntos están alineados.

Pitágoras y el número de oro

Pitágoras (c. 582-c. 500 a.C.), filósofo y matemático griego, nació en la isla de Samos. acia el 530 a.C. se instaló en Crotona, una colonia griega al sur de Italia, donde fundó un movimiento con propósitos religiosos, políticos y filosóficos, conocido como pitagorismo. La filosofía de Pitágoras se conoce sólo a través de la obra de sus discípulos.
Entre las amplias investigaciones matemáticas realizadas por los pitagóricos se encuentran sus estudios de los números pares e impares y de los números primos y de los cuadrados, esenciales en la teoría de los números.

La estrella pentagonal o pentágono estrellado era, según la tradición, el símbolo de los seguidores de Pitágoras. Los pitagóricos pensaban que el mundo estaba configurado según un orden numérico, donde sólo tenían cabida los números fraccionarios. La casualidad hizo que en su propio símbolo se encontrara un número raro: el numero de oro. 
Por ejemplo, la relación entre la diagonal del pentágono y su lado es el número de oro.

También podemos comprobar que los segmentos QN, NP y QP están en proporción áurea.
 

historia del número phi y definición

DEFINICIÓN
Es un número designado con la letra griega FI y su valor      es 1,61803… es el llamado numero de oro y es la inicial del nombre del escultor griego FIDIAS. Su presentación es la siguiente: “dos números a y b están en la proporción de oro. Si a + b es a los mismos que a es b”. Será y es un numero muy importante para la historia, ya que gracias a el se han podido sacar muchas cosas matemáticas.
A este número se le ha dado un carácter casi mágico, haciéndolo aparecer, de forma más o menos natural, en las proporciones de la antigua pirámide de KEOPS, en el Partenón, en las catedrales de Colonia o Notre Dam y dándonos a entender que los arquitectos de distintas épocas lo habían empleado en sus diseños por ser generador de una armonía casi mágica.

La historia del número Phi

  El número Phi también llamado proporción áurea ha existido siempre en el universo físico y se puede explicar de forma matemática. Pero el hombre a lo largo de la historia lo ha descubierto y redescubierto alguna vez. Como muchas otros temas científicos y matemáticos el numero Phi era conocido en la antigua Grecia. Después estos conocimientos fueron olvidados para ser redescubierto mas tarde en la historia. Es por esto también que este número recibe varios nombres.

Antiguo Egipto 
  El número áureo se encuentra en numerosas obras de arte del antiguo Egipto. En la gran pirámide de Keops la relación entre su altitud y la mitad de un lado de su base es casi exactamente phi.
  Aunque no se sabe de cierto que este numero fuese conocido por los antiguos egipcios, el sistema de medidas se basa en la diferentes partes del cuerpo por lo que no es extraño que se encuentre phi en las pirámides.

Antigua Grecia
  En la escuela de Pitágoras (570 / 480 antes de JC) se dice "todo esta arreglado con el numero". Pitágoras y sus discípulos descubren los segmentos inconmensurables apoyándose sin duda en la proporciona áurea.
  Fidias (490 / 430 antes de JC) utilizó la proporción áurea en el Partenón.
  Euclides (325 / 265 antes de JC) define la proporción correspondiente al numero áureo en los "elementos de geometría". Aunque Euclides no relaciona el numero Phi con nada estético o divino.
  Vitrubio (1º siglo antes de JC) arquitecto y ingeniero romano autor de "De Architectura" aborda la importancia de las proporciones en la arquitectura pero sin referencias al numero Phi sino al estudio de las proporciones humanas.
 
Edad Media 
  Fibonacci (1175 / 1240) recoge los conocimientos de Euclides, su sucesión tiene relación directa con el numero phi.
 
Renacimiento
  Luca di Borgo (nacido en 1445) también llamado Luca Pacioli utiliza el número Phi en su libro "de divina proportione" ilustrado por Leonardo de Vinci. Aunque este tratado es puramente geométrico nada sobre el arte. Luca Pacioli fue fraile Franciscano y profesor de matematicas.
  Leonardo de Vinci reflexiona sobre las proporciones humanas perfectas basada en el número Phi que el denomina "sectio aurea". Menciona la proporción divina en su tratado sobre pintura.
  Johannes Kepler (1571 /1630) Astrónomo alemán considera el numero phi uno de los grandes tesoros de la geometría.
 
Siglo XX 
  Martin Ohm Matemático alemán escribió sobre la sección Áurea en 1835 en su libro "Die reine elementar-mathematik", también fue el primero en utilizar la denominación phi en honor a Fidias.
  Adolf zeising (1810 / 1876) doctor en filosofía y profesor habla de la sección Áurea pero no del punto de vista geométrico o matemático sino sobre la estética y la arquitectura. Busca y encuentra esta proporción en los monumentos clásicos. Es el que introduce el lado mítico y místico del número phi.
  Matila Ghyka rumano que escribe sobre el número Phi y lo encuentra en multitud de monumentos pero también en la naturaleza.
  Le corbusier arquitecto Francés inventa el "modulator" que es un sistema de proporciones arquitecturales y la rapidez de construcción.
  Salvador Dalí utiliza el rectángulo áureo en algunos de sus cuadros.